封面论文:粘土矿物基材料用于超灵敏表面增强拉曼散射检测技术
Analytical Methods, 2023, 15, 1001 - 1015
Access PDF reprints here
Manuscript ID: D2AY01262F
Password: 111412 (this link will expire in 60 days)
Analytical Methods, 2023, DOI: 10.1039/D2AY01262F
环境污染已经是导致动植物疾病和非正常死亡的主要环境原因之一。尤其是具有高毒性和低生物降解性有机染料的广泛使用,已经对人类生产、生活造成了严重的危害。例如,常使用的亚甲基蓝(Methylene Blue,MB)染料,当其在血浆中残留量超过1.6×10-6 mol/L时,会造成严重的中枢神经系统疾病。液/气相色谱-质谱虽然可对该类物质进行检测,但是使用这些仪器时测式分析条件要求较复杂,且样品测试前需复杂的预处理,增加了时间和经济成本;另外,对于极低浓度或含量的待检测物,这些仪器分析在灵敏度和检测范围上也较有限,限制了此类方法的进一步发展和降低了分析或诊断的潜力。
拉曼光谱无需复杂的预处理,即可对样品进行快速检测。但是拉曼散射的信号极弱(每1010个入射光子才能产生1个拉曼光子),导致拉曼检测灵敏度低。表面增强拉曼散射(Surface-Enhanced Raman Scattering,SERS)可有效的解决上述问题。SERS对拉曼信号的增强主要来源于金属(主要为金、银)纳米结构产生的局域表面等离子共振(Localized Surface Plasmon Resonance,LSPR)效应,其增强因子理论上可达~1010-1011。因此,制备纳米结构(如:形貌、粒径)可调控的材料至关重要。人工合成的锂皂石(Hectorite,Hct)是由两层Si-O-Si四面体和一层Mg-O-Li八面体构成的层状粘土矿物,具有各向异性的电荷分布:层板带负电荷,层板边缘带正电荷(取决于体系pH)。Hct可作为模板剂诱导金属纳米粒子的生长,调控纳米材料的LSPR效应,改善SERS信号。
近期,浙江工业大学化学工程学院、青阳非金属矿研究院等机构的研究人员合作,利用自主研发生产的锂皂石为主要原材料,开发采用液相还原法制备了粒径约为24 nm的均匀球形Ag@Hct纳米材料,该纳米材料表现出强SERS增强效果。该研究团队通过在Hct分散液中引入烷基链头部和尾部均带负电荷的十二烷基硫酸钠(Sodium Dodecyl Sulfate,SDS),使其同时与边缘带正电荷的Hct NPs和Ag+结合,形成“Hct-SDS-Ag+”的桥接结构,有效的改善了Hct NPs和Ag+的分散,制备了粒子分布均匀、粒径分布窄的球形Ag@Hct纳米材料。通过对比添加/未添加SDS制备的Ag@Hct纳米材料的TEM和EDS-mapping图,揭示了SDS在制备粒子分散均匀的Ag@Hct纳米材料方面的重要作用。进一步使用Zeta电位、红外和拉曼光谱对各步反应物进行了表征,表明了“Hct-SDS-Ag+”桥接结构的形成。通过对使用不同类型的表面活性剂(如:阳离子表面活性剂、阴离子表面活性剂和非离子型表面活性剂)制备的Ag@Hct的紫外-可见吸收光谱和粒径分布进行分析,表明了SDS以“电荷桥”形式连接了Hct和Ag+。进一步调节桥接位点的数量和反应条件,调控了Ag@Hct纳米材料的光学信号和粒径分布。Ag@Hct纳米材料对MB水溶液和污水中MB的SERS检测限分别为10-12 mol/L和10-11 mol/L。同时,Ag@Hct纳米材料对孔雀石绿(MG)和结晶紫(CV)环境污染物也显示出良好的SERS增强效果。该工作日前以 封面论文(见上面的 封面图片) —— 题为“Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection”—— 发表在英国化学会(RSC)分析化学主要刊物《Analytical Methods》上。
该研究采用液相还原法制备了具有均匀纳米结构的Ag@Hct材料,制备工艺简单,重复性好,具有工业化制备粒径为~24 nm球形Ag@Hct纳米材料的潜力。该纳米材料具有良好的SERS活性,对MB水溶液的SERS检测限可低至10-12 mol/L,对污水中MB的检测限为10-11 mol/L,具有在实际应用中使用Ag@Hct纳米材料检测MB的潜力。同时,Ag@Hct纳米材料对可作为标记物的MG和CV分子(包括MB)也具有良好的增强效果,赋予了使用Ag@Hct作为基底材料实现对金属离子(如:Hg2+)和microRNA等物质高灵敏SERS检测的潜力。
The article can be cited as:
Analytical Methods, 2023, DOI: 10.1039/D2AY01262F
Click here to download and share the Advance Article PDF. Subscription access to the journal is required to view this PDF
Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection - Analytical Methods (RSC Publishing)
Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection†
Abstract
The nanostructure of Ag nanoparticles (NPs) plays a critical role in their surface-enhanced Raman scattering (SERS) activity. Despite many efforts to tune the nanostructure of Ag NPs, it remains a great challenge as Ag NPs tend to agglomerate and their nanostructure is difficult to control. Herein, newly-discovered clay-surfactant-Ag+ materials and interfacial processes were developed and used to prepare uniform spherical Ag@synthetic hectorite (Ag@Hct) nanomaterials for ultrasensitive SERS assay. Sodium dodecyl sulfate (SDS), an anionic surfactant, acted as a bridge to conjugate the positively charged edge of Hct NPs and Ag+ via electrostatic interaction to form the bridging nanostructure of Hct-SDS-Ag+, which promoted the uniform dispersion of Hct NPs. Following this, Ag+ was reduced to Ag0 by the reductant, and Ag0 grew on the surface of disc-like Hct NPs to form spherical Ag@Hct nanomaterials with an average particle size of ∼24 nm. The prepared Ag@Hct nanomaterials showed an ultrasensitive SERS response to methylene blue (MB) with a detection limit of 10−12 M. The detection limit of MB in sewage was 10−11 M. The prepared Ag@Hct nanomaterials also exhibited great SERS enhancement for malachite green and crystal violet. This work provides a novel and simple approach to prepare Ag@Hct nanomaterials with uniform spheres and adjustable particle size, allowing more sensitive and reproducible detection of MB.
Author affiliations